
MIPS Assembly Language Guide

MIPS is an example of a Reduced Instruction Set Computer (RISC) which was designed for easy instruction
pipelining. MIPS has a “Load/Store” architecture since all instructions (other than the load and store
instructions) must use register operands. MIPS has 32 32-bit “general purpose” registers ($0, $1, $2, ... , $31),
but some of these have special uses (see MIPS Register Conventions table).

Always Branch to LABELj LABELUnconditional Branch

Branch to LABEL if $4 > $2bgt $4, $2, LABEL
(bge, blt, ble, beq, bne)

Conditional Branch
$4 $2 * 100 (32-bit product)�mul $4, $2, 100
$4 $2 + 100�addi $4, $2, 100Arithmetic with Immediates

(last operand must be an integer)

$4 $2 - $3�sub $4, $2, $3
$10 $12 * $8 (32-bit product)�mul $10, $12, $8
$4 $2 + $3�add $4, $2, $3Arithmetic Instruction

(reg. operands only)

$4 load address of mem�la $5, memLoad Address
$4 100�li $4, 100
$4 $2�move $4, $2Move
[Mem at address in $3 + 16]� $4sw $4, 16($3)
$4� [Mem at address in $3 + 16]lw $4, 16($3)
Mem $4�sw $4, Mem
$4� [Mem]lw $4, MemMemory Access

(Load and Store)

Register Transfer Language
Description

MIPS
Assembly Language

Type of Instruction
Common MIPS Instructions (and psuedo-instructions)

A simple MIPS assembly language program to sum the elements in an array A is given below:
.data

array: .word 5, 10, 20, 25, 30, 40, 60
length: .word 7
sum: .word 0

Algorithm being implemented to sum an array
sum = 0 (use $8 for sum)
for i := 0 to length-1 do (use $9 for i)
sum := sum + array[i] (use $10 for length-1)
end for (use $11 for base addr. of array)

.text

.globl main
main:

li $8, 0 # load immediate 0 in reg. $8 (sum)
la $11, array # load base addr. of array into $11

for:
lw $10, length # load length in reg. $10
addi $10, $10, -1 # $10 = length - 1
li $9, 0 # initialize i in $9 to 0

for_compare:
bgt $9, $10, end_for # drop out of loop when i > (le ngth-1)
mul $12, $9, 4 # mult. i by 4 to get offset within ar ray
add $12, $11, $12 # add base addr. of array to $12 to get addr. of array[i]
lw $12, 0($12) # load value of array[i] from memory i nto $12
add $8, $8, $12 # update sum
addi $9, $9, 1 # increment i
j for_compare

end_for:

sw $8, sum

li $v0, 10 # system code for exit

syscall

$4 NOT $5 #inverts all the bits�not $4, $5
$4 $5 (bit-wise NOR) $6�nor $4, $5, $6
$4 $5 (bit-wise Exclusive-OR) 5f16�xori $4, $5, 0x5f
$4 $5 (bit-wise Exclusive-OR) $6�xor $4, $5, $6
$4 $5 (bit-wise OR) 5f16�ori $4, $5, 0x5f
$4 $5 (bit-wise OR) $6�or $4, $5, $6
$4 $5 (bit-wise AND) 5f16�andi $4, $5, 0x5f
$4 $5 (bit-wise AND) $6�and $4, $5, $6

MIPS Logical Instructions

Similar to above, but least significant 5-bits of $6 determine the amount to rotate.ror $4, $5, $6
$4 rotate right $5 by 3 positions�ror $4, $5, 3
Similar to above, but least significant 5-bits of $6 determine the amount to rotate.rol $4, $5, $6
$4 rotate left $5 by 3 positions�rol $4, $5, 3
Similar to sra, but least significant 5-bits of $6 determine the amount to shift.srav $4, $5, $6
$4 shift right $5 by 3 positions. Sign-extend (shift in sign bit)�sra $4, $5, 3
Similar to srl, but least significant 5-bits of $6 determine the amount to shift.srlv $4, $5, $6
$4 shift right $5 by 3 positions. Shift in zeros�srl $4, $5, 3
Similar to sll, but least significant 5-bits of $6 determine the amount to shift.sllv $4, $5, $6

$4 shift left $5 by 3 positions. Shift in zeros (only least significant 5-bits of immediate�

value are used to shift)
sll $4, $5, 3

MIPS Shift and Rotate Instructions

Common usages for shift/rotate and logical instructions include:

1. To calculate the address of element array[i], we calculate (base address of array) + i * 4 for an array of
words. Since multiplication is a slow operation, we can shift the value left two bit positions. For example:
la $3, array # load base address of array into $3
sll $10, $2, 2 # logical shift i’s value in $2 by 2 to multiply its value by 4
add $10, $3, $10 # finish calculation of the addre ss of element array[i]
lw $4, 0($10) # load the value of array[i] into $4

2. Sometimes you want to manipulate individual bits in a “string of bits”. For example, you can represent a set
of letters using a bit-string. Each bit in the bit-string is associated with a letter: bit position 0 with ‘A’, bit
position 1 with ‘B’, ..., bit position 25 with ‘Z’. Bit-string bits are set to ‘1’ to indicate that their corresponding
letters are in the set. For example, the set { ‘A’, ‘B’, ‘D’, ‘Y’ } would be represented as:

'A''B''C''D''E''Z' 'Y' 'X' . . .

bit position: 25 24 23 4 3 2 1 0

{ 'A', 'B', 'D', 'Y' } is 0 1 0 0 1 0 1 1 0 0 0 0 0 0

 unused

To determine if a specific ASCII character, say ‘C’ (6710) is in the set, you would need to build a “mask”
containing a single “1” in bit position 2. The sequence of instructions “li $3, 1” followed by “sll $3, $3, 2”
would build the needed mask in $3. If the bit-string set of letters is in register $5, then we can check for the
character ‘C’ using the mask in $3 and the instruction “and $6, $5, $3”. If the bit-string set in $5 contained a
‘C’, then $6 will be non-zero; otherwise $6 will be zero.

MIPS Guide Page 2 of 10

 High-level Language Programmer’s View

end Powerend for num
return result end for pow
end if Power(num, pow)
 result = Power(n, e - 1)* n print num “ raised to “ pow “ power is “ end main
else . . .
 result = n for pow := 1 to powerLimit do (*)
else if e = 1 thenfor num := 1 to numLimit doCalculatePowers(maxNum, maxPower)
 result = 1
if e = 0 then integer num, powmaxPower = 4
integer result maxNum = 3

integer Power(In: integer n, integer e)CalculatePowers(In: integer numLimit,
 integer powerLimit)

main:

Compiler uses registers to avoid accessing the run-time stack in memory as much as
possible. Registers can be used for local variables, parameters, return address,
function-return value.

When a subprogram is called, some of the register values might need to be saved
("spilled") on the stack to free up some registers for the subprogram to use.

Standard conventions for spilling registers:
1) caller save - before the call, caller saves the register values it needs after execution
returns from the subprogram
2) callee save - subprogram saves and restores any register it uses in its code
3) some combination of caller and callee saved (USED BY MIPS)

MIPS Guide Page 3 of 10

HLL View of Run-time Stack

maxNum

maxPower
4

3

Main's
Call Frame

CalculatePowers'
Call Frame

pow

num

return addr. (*)

3

3

numLimit

powerLimit

 3

4

AL code for subprogram "caller"

 <code using some registers>

 call subprogram

 <wants used registers to be unchanged>

Receives return addr. on jal call to procedure Return address (used by a procedure call)ra31
$fp not used so use as $s8Frame pointer (if needed) or another saved register$fp/$s8$30
Points to first free memory location above stackStack pointersp29

Pointer to global areagp28
DON'T USEReserved for the Operating System Kernel$k0, $k1 $26, $27

Callee-saved registers - it can rely on an subprogram it
calls not to change them (so a subprogram wishing to use
these registers must save them on entry and restore them
before it exits)

Saved temporary (preserved across call)$s0 - $s7 $16 - $23

Caller-saved registers - subprogram can use them as
scratch registers, but it must also save any needed values
before calling another subprogram.

Temporary registers (not preserved across call)$t0 - $t9 $8 - $15,
$24, $25

First 4 arguments to a procedure$a0 - $a3 $4 - $7
Results of a function$v0, $v1 $2, $3

DON'T USEUsed by assembler to implement psuedoinstructionsat1
Cannot be changedconstant value zero$zero$0

CommentsRole in Procedure CallsConvention
Name

Reg. #
MIPS Register Conventions

 . . .
1) allocate memory for frame by subtracting frame size from $sp
2) save callee-saved registers ($s0 - $s7) if more registers than $t0 - $t9
 and $a0 - $a3 are needed
3) save $ra if another procedure is to be called

 . . . code for the callee
4) for functions, place result to be returned in $v0 - $v1
5) restore any callee-saved registers ($s0 - $s7) from step (2) above
6) restore $ra if it was saved on the stack in step (3)
7) pop stack frame by adding frame size to $sp
8) return to caller by "jr $ra" instruction

 . . .
1) save on stack any $t0 - $t9 and $a0 - $a3 that are needed upon return
2) place arguments to be passed in $a0 - $a3 with additional parameters
 pushed onto the stack
3) jal ProcName # saves return address in $ra
4) restore any saved registers $t0 - $t9 and $a0 - $a3 from stack

Callee CodeCaller Code
Using MIPS Calling Convention

MIPS Guide Page 4 of 10

end CalculatePowers

end Powerend for num
return result end for pow
end if Power(num, pow)
 result = Power(n, e - 1)* n print num “ raised to “ pow “ power is “ end main
else . . .
 result = n for pow := 1 to powerLimit do (*)
else if e = 1 thenfor num := 1 to numLimit doCalculatePowers(maxNum, maxPower)
 result = 1
if e = 0 then integer num, powmaxPower = 4
integer result maxNum = 3

integer Power(In: integer n, integer e)CalculatePowers(In: integer numLimit,
 integer powerLimit)

main:

a) Using the MIPS register conventions, what registers would be used to pass each of the following parameters to CalculatePowers:
maxPowermaxNum

b) Using the MIPS register conventions, which of these parameters ("numLimit", "powerLimit", or both of them) should be moved into s-registers?
(NOTE: Use an s-register for any value you still need after you come back from a subprogram/function/procedure call, e.g., call to “Power”)

c) Using the MIPS register conventions, what registers should be used for each of the local variables:
pownum

d) Using the MIPS register conventions, what registers would be used to pass each of the following parameters to Power:
pownum

e) Using the MIPS register conventions, which of these parameters ("n", "e", or both of them) should be moved into s-registers?

f) Using the MIPS register conventions, what register should be used for the local variable:
result

g) Write the code for main, CalculatePowers, and Power in MIPS assembly language.

MIPS Guide Page 5 of 10

end Insertend main
 numbers[testIndex + 1] = elementToInsert;
 end while . . .
 testIndex = testIndex - 1; end InsertionSort(*)

 numbers[testIndex+1] = numbers[testIndex];

 end for InsertionSort(scores, n)

 while (testIndex >=0) AND
 (numbers[testIndex] > elementToInsert) do

 Insert(numbers, numbers[firstUnsortedIndex],
 firstUnsortedIndex-1);

 testIndex = lastSortedIndex; for firstUnsortedIndex = 1 to (length-1) dointeger n; // # of elements
 integer testIndex; integer firstUnsortedIndexinteger scores [100];

Insert(numbers - address to integer array,
 elementToInsert - integer,
 lastSortedIndex - integer) {

InsertionSort(numbers - address to integer array,
 length - integer)

main:

a) Using the MIPS register conventions, what registers would be used to pass each of the following parameters to InsertionSort:
nscores

b) Using the MIPS register conventions, which of these parameters ("numbers", "length", or both of them) should be moved into s-registers?

c) Using the MIPS register conventions, what registers should be used for the local variable "firstUnsortedIndex"?

d) Using the MIPS register conventions, what registers would be used to pass each of the following parameter values to Insert:
firstUnsortedIndex-1numbers[firstUnsortedIndex]numbers

e) Using the MIPS register conventions, which of these parameters ("numbers", "elementToInsert", or "lastSortedIndex") should be moved into
s-registers?

f) Using the MIPS register conventions, what registers should be used for the local variable "testIndex"?

g) Write the code for main, InsertionSort, and Insert in MIPS assembly language.

MIPS Guide Page 6 of 10

PCSpim I/O Support

Access to Input/Output (I/O) devices within a computer system is generally restricted to prevent user
programs from directly accessing them. This prevents a user program from accidentally or maliciously
doing things like:

� reading someone else's data file from a disk
� writing to someone else's data file on a disk
� etc.

However, user programs need to perform I/O (e.g., read and write information to files, write to the
console, read from the keyboard, etc.) if they are to be useful. Therefore, most computer systems require
a user program to request I/O by asking the operating system to perform it on their behalf.

PCSpim uses the "syscall" (short for "system call") instruction to submit requests for I/O to the operating
system. The register $v0 is used to indicate the type of I/O being requested with $a0, $a1, $f12 registers
being used to pass additional parameters to the operating system. Integer results and addresses are
returned in the $v0 register, and floating point results being returned in the $f0 register. The following
table provides details of the PCSpim syscall usage.

10exit

$v0 returns the starting address of the
block of memory

$a0 contains the number of
bytes in the requested block

9sbrk - request a
memory block

$a0 contains the address of
the buffer to store the string
$a1 contains the maximum
length of the buffer

8read_string

$f0 and $f1 returns the 64-bit
floating-point value read

7read_double

$f0 returns the 32-bit floating-point
value read

6read_float
$v0 returns the integer value read5read_int

$a0 contains the address of
the .asciiz string to print

4print_string

$f12 (and $f13) contains the
64-bit double to print

3print_double

$f12 contains the 32-bit float
to print

2print_float

$a0 contains the integer
value to print

1print_int

Registers used to return results Registers used to pass
additional arguments

System call
code passed
in $v0

Service
Requested

MIPS Guide Page 7 of 10

CalculatePowers subprogram example using MIPS register conventions and PCSpim syscalls

.data
maxNum: .word 3
maxPower: .word 4
str1: .asciiz " raised to "
str2: .asciiz " power is "
str3: .asciiz "\n" # newline character

.text

.globl main
main:

lw $a0, maxNum # $a0 contains maxNum
lw $a1, maxPower # $a1 contains maxPower
jal CalculatePower

li $v0, 10 # system code for exit
syscall

###
CalculatePower: # $a0 contains value of numLimit

$a1 contains value of powerLimit

addi $sp, $sp, -20 # save room for the return address
sw $ra, 4($sp) # push return address onto stack
sw $s0, 8($sp)
sw $s1, 12($sp)
sw $s2, 16($sp)
sw $s3, 20($sp)

move $s0, $a0 # save numLimit in $s0
move $s1, $a1 # save powerLimit in $s1

for_1:
li $s2, 1 # $s2 contains num

for_compare_1:
bgt $s2, $s0, end_for_1

for_body_1:

for_2:
li $s3, 1 # $s3 contains pow

for_compare_2:
bgt $s3, $s1, end_for_2

for_body_2:
move $a0, $s2 # print num
li $v0, 1
syscall

MIPS Guide Page 8 of 10

la $a0, str1 # print " raised to "
li $v0, 4
syscall

move $a0, $s3 # print pow
li $v0, 1
syscall

la $a0, str2 # print " power is "
li $v0, 4
syscall

move $a0, $s2 # call Power(num, pow)
move $a1, $s3
jal Power

move $a0, $v0 # print result

li $v0, 1
syscall

la $a0, str3 # print new-line character
li $v0, 4
syscall

addi $s3, $s3, 1
j for_compare_2

end_for_2:

addi $s2, $s2, 1
j for_compare_1

end_for_1:

lw $ra, 4($sp) # restore return addr. to $ra
lw $s0, 8($sp) # restore saved $s registers
lw $s1, 12($sp)
lw $s2, 16($sp)
lw $s3, 20($sp)

addi $sp, $sp, 20 # pop call frame from stack
jr $ra

end_CalculatePowers:

MIPS Guide Page 9 of 10

###
Power: # $a0 contains n (we never change it during the

recursive calls so we don't need to save it)
$a1 contains e

addi $sp, $sp, -4
sw $ra, 4($sp) # save $ra on stack

if:
bne $a1, $zero, else_if
li $v0, 1 # $v0 contains result
j end_if

else_if:
bne $a1, 1, else
move $v0, $a0
j end_if

else: # first parameter is still n in $a0
addi $a1, $a1, -1 # put second parameter, e-1, in $a1
jal Power # returns with value of Power(n, e-1) in $v0
mul $v0, $v0, $a0 # result = Power(n, e-1) * n

end_if:
lw $ra, 4($sp) # restore return addr. to $ra
addi $sp, $sp, 4 # pop call frame from stack
jr $ra

end_Power:

Snap-shot of the Console window after the program executes:

MIPS Guide Page 10 of 10

